35 research outputs found

    The right tools for the job: Cooperative breeding theory and an evaluation of the methodological approaches to understanding the evolution and maintenance of sociality

    Full text link
    © 2017 Hing, Klanten, Dowton and Wong. Why do we observe so many examples in nature in which individuals routinely delay or completely forgo their own reproductive opportunities in order to join and remain within a group? Cooperative breeding theory provides a rich framework with which to study the factors that may influence the costs and benefits of remaining philopatric as a non-breeder. This is often viewed as an initial step in the development of costly helping behavior provided by non-breeding subordinates. Despite many excellent empirical studies testing key concepts of the theory, there is still debate regarding the relative importance of various evolutionary forces, suggesting that there may not be a general explanation but rather a dynamic and taxonomically varied combination of factors influencing the evolution and maintenance of sociality. Here, we explore two potential improvements in the study of sociality that could aid in the progress of this field. The first addresses the fact that empirical studies of social evolution are typically conducted using either comparative, observational or manipulative methodologies. Instead, we suggest a holistic approach, whereby observational and experimental studies are designed with the explicit view of advancing comparative analyses of sociality for the taxon, and in tandem, where comparative work informs targeted research effort on specific (usually understudied) species within the lineage. A second improvement relates to the broadening of tests of cooperative breeding theory to include taxa where subordinates do not necessarily provide active cooperation within the group. The original bias toward "helpful subordinates" arose from a focus on terrestrial taxa. However, recent consideration of other taxa, especially marine taxa, is slowly revealing that the theory can and should encompass a continuum of cooperative social systems, including those where subordinates do not actively help. This review summarizes the major hypotheses of cooperative breeding theory, one of the dominant frameworks to examine social evolution, and highlights the potential benefits that a combined methodological approach and a broader application could provide to the study of sociality

    Uneven declines between corals and cryptobenthic fish symbionts from multiple disturbances

    Full text link
    With the onset and increasing frequency of multiple disturbances, the recovery potential of critical ecosystem-building species and their mutual symbionts is threatened. Similar effects to both hosts and their symbionts following disturbances have been assumed. However, we report unequal declines between hosts and symbionts throughout multiple climate-driven disturbances in reef-building Acropora corals and cryptobenthic coral-dwelling Gobiodon gobies. Communities were surveyed before and after consecutive cyclones (2014, 2015) and heatwaves (2016, 2017). After cyclones, coral diameter and goby group size (i.e., the number of gobies within each coral) decreased similarly by 28-30%. After heatwave-induced bleaching, coral diameter decreased substantially (47%) and gobies mostly inhabited corals singly. Despite several coral species persisting after bleaching, all goby species declined, leaving 78% of corals uninhabited. These findings suggest that gobies, which are important mutual symbionts for corals, are unable to cope with consecutive disturbances. This disproportionate decline could lead to ecosystem-level disruptions through loss of key symbiont services to corals

    Social motivation and conflict resolution tactics as potential building blocks of sociality in cichlid fishes

    Get PDF
    Even closely related and ecologically similar cichlid species of Lake Tanganyika exhibit an impressive diversity of social systems, and therefore these fishes offer an excellent opportunity to examine the evolution of social behaviour. Sophisticated social relationships are thought to have evolved via a building block design where more fundamental social behaviours and cognitive processes have been combined, incrementally modified, and elaborated over time. Here, we studied two of these putative social building blocks in two closely related species of cichlids: Neolamprologus pulcher, a group-living species, and Telmatochromis temporalis, a non-grouping species. Otherwise well matched in ecology, this pair of species provide an excellent comparison point to understand how behavioural processes may have been modified in relation to the evolution of sociality. Using social assays in both the laboratory and in the field, we explored each species’ motivation to interact with conspecifics, and each species’ conflict resolution tactics. We found that individuals of the group living species, N. pulcher, displayed higher social motivation and were more likely to produce submission displays than were individuals of the non-grouping species, T. temporalis. We argue that the motivation to interact with conspecifics is a necessary prerequisite for the emergence of group living, and that the use of submission reduces the costs of conflict and facilitates the maintenance of close social proximity. These results suggest that social motivation and conflict resolution tactics are associated with social complexity, and that these behavioural traits may be functionally significant in the evolution and maintenance of sociality

    Repeated cyclone events reveal potential causes of sociality in coral-dwelling Gobiodon fishes

    Full text link
    © 2018 Hing et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Social organization is a key factor influencing a species’ foraging and reproduction, which may ultimately affect their survival and ability to recover from catastrophic disturbance. Severe weather events such as cyclones can have devastating impacts to the physical structure of coral reefs and on the abundance and distribution of its faunal communities. Despite the importance of social organization to a species’ survival, relatively little is known about how major disturbances such as tropical cyclones may affect social structures or how different social strategies affect a species’ ability to cope with disturbance. We sampled group sizes and coral sizes of group-forming and pair-forming species of the Gobiid genus Gobiodon at Lizard Island, Great Barrier Reef, Australia, before and after two successive category 4 tropical cyclones. Group sizes of group-forming species decreased after each cyclone, but showed signs of recovery four months after the first cyclone. A similar increase in group sizes was not evident in group-forming species after the second cyclone. There was no change in mean pair-forming group size after either cyclone. Coral sizes inhabited by both group- and pair-forming species decreased throughout the study, meaning that group-forming species were forced to occupy smaller corals on average than before cyclone activity. This may reduce their capacity to maintain larger group sizes through multiple processes. We discuss these patterns in light of two non-exclusive hypotheses regarding the drivers of sociality in Gobiodon, suggesting that benefits of philopatry with regards to habitat quality may underpin the formation of social groups in this genus

    Both loved and feared: third party punishers are viewed as formidable and likeable, but these reputational benefits may only be open to dominant individuals

    Get PDF
    Journal ArticleResearch Support, Non-U.S. Gov'tCopyright: © 2014 Gordon et al.The datasets associated with this article are available in ORE at http://hdl.handle.net/10871/15639Third party punishment can be evolutionarily stable if there is heterogeneity in the cost of punishment or if punishers receive a reputational benefit from their actions. A dominant position might allow some individuals to punish at a lower cost than others and by doing so access these reputational benefits. Three vignette-based studies measured participants' judgements of a third party punisher in comparison to those exhibiting other aggressive/dominant behaviours (Study 1), when there was variation in the success of punishment (Study 2), and variation in the status of the punisher and the type of punishment used (Study 3). Third party punishers were judged to be more likeable than (but equally dominant as) those who engaged in other types of dominant behaviour (Study 1), were judged to be equally likeable and dominant whether their intervention succeeded or failed (Study 2), and participants believed that only a dominant punisher could intervene successfully (regardless of whether punishment was violent or non-violent) and that subordinate punishers would face a higher risk of retaliation (Study 3). The results suggest that dominance can dramatically reduce the cost of punishment, and that while individuals can gain a great deal of reputational benefit from engaging in third party punishment, these benefits are only open to dominant individuals. Taking the status of punishers into account may therefore help explain the evolution of third party punishment.School of Psychology, University of Exete

    Predation avoidance and foraging efficiency contribute to mixed-species shoaling by tropical and temperate fishes.

    Full text link
    The formation of mixed-species social groups, whereby heterospecifics form and maintain either transient or stable groups with each other, can confer substantial fitness benefits to individuals. Such benefits may arise via multiple mechanisms associated with both predation avoidance and foraging efficiency. In fishes, mixed-species shoaling reportedly occurs where displaced tropical species (known as "vagrants") interact with resident temperate species, although little is known about the nature and frequency of such interactions. To investigate this phenomenon, we used displaced tropical Indo-pacific Sergeant Abudefduf vaigiensis settling in temperate south-eastern Australia as a model system. Underwater visual surveys revealed shoal composition and size differed significantly between open-water and reef habitats, with shoals in open habitats being larger and more speciose. Shoals containing A. vaigiensis were mainly mixed-species, and larger and more speciose in open habitats than nearer to reef. Since both foraging efficiency (via access to plankton) and predation threat likely increase with increasing distance from reef habitat, we suggest that mixed-species shoaling mitigates predation risk whilst allowing increased foraging opportunities for A. vaigiensis in open areas. These findings provide support for the importance of mixed-species shoaling to the persistence of tropical reef fishes in temperate regions

    Odd one in: Oddity within mixed-species shoals does not affect shoal preference by vagrant tropical damselfish in the presence or absence of a predator

    Full text link
    © 2020 Wiley-VCH GmbH Grouping behaviour displayed by animals is usually attributed to predation and foraging-related benefits. The mechanisms of predator protection and foraging efficiency are diverse and often produce conflicting drivers of grouping behaviour. One key conflict is that between group size and phenotypic oddity. Theoretically, individuals should choose the largest available group due to multiple mechanisms associated with “safety in numbers”. However, individuals should also choose the most phenotypically similar group members due to the “predator confusion effect”. This conflict is particularly important within the context of mixed-species groups because, while their formation may facilitate large group size, phenotypic differences between species may be costly due to oddity. To investigate the interacting effects of shoal size, composition and predator presence on grouping decisions, choice experiments were conducted using displaced tropical damselfish, Abudefduf vaigiensis, settling in temperate south-eastern Australia (termed vagrants) as a model species. Contrary to predictions, A. vaigiensis displayed no preference for single- over mixed-species shoals, with or without a predator present. These results suggest that shoal composition may not be an important driver of shoal choice in this system. Further, A. vaigiensis showed no preference for larger mixed-species shoals over smaller single-species shoals. These outcomes are discussed within the context of climate change-driven redistribution of A. vaigiensis in temperate south-eastern Australia

    Drivers of sociality in Gobiodon fishes: An assessment of phylogeny, ecology and life-history

    Full text link
    © 2019 Elsevier Inc. What drives the evolution of sociality in animals? Many robust studies in terrestrial organisms have pointed toward various kinship-based, ecological and life-history traits or phylogenetic constraint which have played a role in the evolution of sociality. These traits are not mutually exclusive and the exact combination of traits is likely taxon-specific. Phylogenetic comparative analyses have been instrumental in identifying social lineages and comparing various traits with non-social lineages to give broad evolutionary perspectives on the development of sociality. Few studies have attempted this approach in marine vertebrate systems. Social marine fishes are particularly interesting because many have a pelagic larval phase and non-conventional life-history strategies (e.g. bi-directional sex-change) not often observed in terrestrial animals. Such strategies provide novel insights into terrestrially-derived theories of social evolution. Here, we assess the strength of the phylogenetic signal of sociality in the Gobiodon genus with Pagel's lambda and Blomberg's K parameters. We found some evidence of a phylogenetic signal of sociality, but factors other than phylogenetic constraint also have a strong influence on the extant social state of each species. We then use phylogenetic generalized least squares analyses to examine several ecological and life-history traits that may have influenced the evolution of sociality in the genus. We found an interaction of habitat size and fish length was the strongest predictor of sociality. Sociality in larger species was more dependent on coral size than in smaller species, but smaller species were more social overall, regardless of coral size. Finally, we comment on findings regarding the validity of the species G. spilophthalmus which arose during the course of our research. These findings in a group of marine fishes add a unique perspective on the evolution of sociality to the excellent terrestrial work conducted in this field

    Habitat health, size and saturation do not alter movement decisions in a social coral reef fish

    Full text link
    While habitat is often a limiting resource for group-living animals, we have yet to understand what aspects of habitat are particularly important for the maintenance of sociality. As anthropogenic disturbances rapidly degrade the quality of many habitats, site-associated animals are facing additional stressors that may alter the trade-offs of moving or remaining philopatric. Here we examined how habitat health, size and saturation affect movement decisions of a coral-dwelling goby, the five-lined coral goby, Gobiodon quinquestrigatus, that resides within bleaching-susceptible Acropora coral hosts. To assess effects of habitat health, we translocated individuals far from their home corals into dead corals with the choice of adjacent healthy corals. To assess effects of habitat size and saturation, we manipulated coral sizes and the number of residents in healthy corals. Remarkably, 55% of gobies returned home regardless of treatment, 7% stayed in the new coral, and the rest were not found. Unlike other coral reef fishes, habitat factors did not affect how costs of movement influence group-living decisions in this species. These obligate coral-dwelling fishes preferred to home instead of choosing alternative habitat, which suggests a surprising awareness of their ecological surroundings. However, disregarding alternative high-quality habitat is concerning as it may affect population persistence under conditions of rapid habitat degradation
    corecore